Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Death Dis ; 15(4): 246, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575601

RESUMO

Parkinson's disease (PD) is a debilitating neurodegenerative disease characterized by the loss of midbrain dopaminergic neurons (DaNs) and the abnormal accumulation of α-Synuclein (α-Syn) protein. Currently, no treatment can slow nor halt the progression of PD. Multiplications and mutations of the α-Syn gene (SNCA) cause PD-associated syndromes and animal models that overexpress α-Syn replicate several features of PD. Decreasing total α-Syn levels, therefore, is an attractive approach to slow down neurodegeneration in patients with synucleinopathy. We previously performed a genetic screen for modifiers of α-Syn levels and identified CDK14, a kinase of largely unknown function as a regulator of α-Syn. To test the potential therapeutic effects of CDK14 reduction in PD, we ablated Cdk14 in the α-Syn preformed fibrils (PFF)-induced PD mouse model. We found that loss of Cdk14 mitigates the grip strength deficit of PFF-treated mice and ameliorates PFF-induced cortical α-Syn pathology, indicated by reduced numbers of pS129 α-Syn-containing cells. In primary neurons, we found that Cdk14 depletion protects against the propagation of toxic α-Syn species. We further validated these findings on pS129 α-Syn levels in PD patient neurons. Finally, we leveraged the recent discovery of a covalent inhibitor of CDK14 to determine whether this target is pharmacologically tractable in vitro and in vivo. We found that CDK14 inhibition decreases total and pathologically aggregated α-Syn in human neurons, in PFF-challenged rat neurons and in the brains of α-Syn-humanized mice. In summary, we suggest that CDK14 represents a novel therapeutic target for PD-associated synucleinopathy.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Sinucleinopatias , Animais , Humanos , Camundongos , Ratos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Neurônios Dopaminérgicos/metabolismo , Mesencéfalo/metabolismo , Doenças Neurodegenerativas/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Sinucleinopatias/metabolismo , Sinucleinopatias/patologia
2.
BMC Biol ; 21(1): 240, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37907898

RESUMO

BACKGROUND: PFTK1/Eip63E is a member of the cyclin-dependent kinases (CDKs) family and plays an important role in normal cell cycle progression. Eip63E expresses primarily in postnatal and adult nervous system in Drosophila melanogaster but its role in CNS development remains unknown. We sought to understand the function of Eip63E in the CNS by studying the fly ventral nerve cord during development. RESULTS: Our results demonstrate that Eip63E regulates axogenesis in neurons and its deficiency leads to neuronal defects. Functional interaction studies performed using the same system identify an interaction between Eip63E and the small GTPase Rho1. Furthermore, deficiency of Eip63E homolog in mice, PFTK1, in a newly generated PFTK1 knockout mice results in increased axonal outgrowth confirming that the developmental defects observed in the fly model are due to defects in axogenesis. Importantly, RhoA phosphorylation and activity are affected by PFTK1 in primary neuronal cultures. We report that GDP-bound inactive RhoA is a substrate of PFTK1 and PFTK1 phosphorylation is required for RhoA activity. CONCLUSIONS: In conclusion, our work establishes an unreported neuronal role of PFTK1 in axon development mediated by phosphorylation and activation of GDP-bound RhoA. The results presented add to our understanding of the role of Cdks in the maintenance of RhoA-mediated axon growth and its impact on CNS development and axonal regeneration.


Assuntos
Quinases Ciclina-Dependentes , Drosophila melanogaster , Animais , Camundongos , Ciclo Celular , Quinases Ciclina-Dependentes/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Neurônios/metabolismo , Fosforilação , Proteína rhoA de Ligação ao GTP/metabolismo
3.
BMC Biol ; 20(1): 115, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35581583

RESUMO

BACKGROUND: Activated Cdk5 regulates a number of processes during nervous system formation, including neuronal differentiation, growth cone stabilization, and axonal growth. Cdk5 phosphorylates its downstream substrates located in axonal growth cones, where the highly expressed c-Jun N-terminal kinase (JNK)-interacting protein1 (JIP1) has been implicated as another important regulator of axonal growth. In addition, stringent control of the level of intracellular domain of Notch1 (Notch1-IC) plays a regulatory role in axonal outgrowth during neuronal differentiation. However, whether Cdk5-JIP1-Notch1 cooperate to regulate axonal outgrowth, and the mechanism of such joint contribution to this pathway, is presently unknown, and here we explore their potential interaction. RESULTS: Our interactome screen identified JIP1 as an interactor of p35, a Cdk5 activator, and we sought to explore the relationship between Cdk5 and JIP1 on the regulation of axonal outgrowth. We demonstrate that JIP1 phosphorylated by Cdk5 at Thr205 enhances axonal outgrowth and a phosphomimic JIP1 rescues the axonal outgrowth defects in JIP1-/- and p35-/- neurons. Axonal outgrowth defects caused by the specific increase of Notch1 in JIP1-/- neurons are rescued by Numb-mediated inhibition of Notch1. Finally, we demonstrate that Cdk5 phosphorylation of JIP1 further amplifies the phosphorylation status of yet another Cdk5 substrate E3-ubiquitin ligase Itch, resulting in increased Notch1 ubiquitination. CONCLUSIONS: Our findings identify a potentially critical signaling axis involving Cdk5-JIP1-Itch-Notch1, which plays an important role in the regulation of CNS development. Future investigation into the way this pathway integrates with additional pathways regulating axonal growth will further our knowledge of normal central nervous system development and pathological conditions.


Assuntos
Neurônios , Transdução de Sinais , Células Cultivadas , Neurônios/metabolismo , Fosforilação , Transdução de Sinais/fisiologia
4.
BMC Biol ; 19(1): 57, 2021 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-33761951

RESUMO

BACKGROUND: Mitochondrial dysfunction is a common feature of aging, neurodegeneration, and metabolic diseases. Hence, mitotherapeutics may be valuable disease modifiers for a large number of conditions. In this study, we have set up a large-scale screening platform for mitochondrial-based modulators with promising therapeutic potential. RESULTS: Using differentiated human neuroblastoma cells, we screened 1200 FDA-approved compounds and identified 61 molecules that significantly increased cellular ATP without any cytotoxic effect. Following dose response curve-dependent selection, we identified the flavonoid luteolin as a primary hit. Further validation in neuronal models indicated that luteolin increased mitochondrial respiration in primary neurons, despite not affecting mitochondrial mass, structure, or mitochondria-derived reactive oxygen species. However, we found that luteolin increased contacts between mitochondria and endoplasmic reticulum (ER), contributing to increased mitochondrial calcium (Ca2+) and Ca2+-dependent pyruvate dehydrogenase activity. This signaling pathway likely contributed to the observed effect of luteolin on enhanced mitochondrial complexes I and II activities. Importantly, we observed that increased mitochondrial functions were dependent on the activity of ER Ca2+-releasing channels inositol 1,4,5-trisphosphate receptors (IP3Rs) both in neurons and in isolated synaptosomes. Additionally, luteolin treatment improved mitochondrial and locomotory activities in primary neurons and Caenorhabditis elegans expressing an expanded polyglutamine tract of the huntingtin protein. CONCLUSION: We provide a new screening platform for drug discovery validated in vitro and ex vivo. In addition, we describe a novel mechanism through which luteolin modulates mitochondrial activity in neuronal models with potential therapeutic validity for treatment of a variety of human diseases.


Assuntos
Retículo Endoplasmático/efeitos dos fármacos , Luteolina/farmacologia , Mitocôndrias/efeitos dos fármacos , Neurônios/metabolismo , Animais , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos , Retículo Endoplasmático/metabolismo , Ensaios de Triagem em Larga Escala , Humanos , Camundongos , Mitocôndrias/metabolismo , Neurônios/efeitos dos fármacos , Transdução de Sinais
5.
J Biol Chem ; 294(21): 8617-8629, 2019 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-30967472

RESUMO

We previously reported that the cell cycle-related cyclin-dependent kinase 4-retinoblastoma (RB) transcriptional corepressor pathway is essential for stroke-induced cell death both in vitro and in vivo However, how this signaling pathway induces cell death is unclear. Previously, we found that the cyclin-dependent kinase 4 pathway activates the pro-apoptotic transcriptional co-regulator Cited2 in vitro after DNA damage. In the present study, we report that Cited2 protein expression is also dramatically increased following stroke/ischemic insult. Critically, utilizing conditional knockout mice, we show that Cited2 is required for neuronal cell death, both in culture and in mice after ischemic insult. Importantly, determining the mechanism by which Cited2 levels are regulated, we found that E2F transcription factor (E2F) family members participate in Cited2 regulation. First, E2F1 expression induced Cited2 transcription, and E2F1 deficiency reduced Cited2 expression. Moreover, determining the potential E2F-binding regions on the Cited2 gene regulatory sequence by ChIP analysis, we provide evidence that E2F1/4 proteins bind to this DNA region. A luciferase reporter assay to probe the functional outcomes of this interaction revealed that E2F1 activates and E2F4 inhibits Cited2 transcription. Moreover, we identified the functional binding motif for E2F1 in the Cited2 gene promoter by demonstrating that mutation of this site dramatically reduces E2F1-mediated Cited2 transcription. Finally, E2F1 and E2F4 regulated Cited2 expression in neurons after stroke-related insults. Taken together, these results indicate that the E2F-Cited2 regulatory pathway is critically involved in stroke injury.


Assuntos
Fator de Transcrição E2F1/metabolismo , Fator de Transcrição E2F4/metabolismo , Regulação da Expressão Gênica , Neurônios/metabolismo , Proteínas Repressoras/biossíntese , Acidente Vascular Cerebral/metabolismo , Transativadores/biossíntese , Motivos de Aminoácidos , Animais , Morte Celular , Fator de Transcrição E2F1/genética , Fator de Transcrição E2F4/genética , Camundongos , Camundongos Transgênicos , Neurônios/patologia , Proteínas Repressoras/genética , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/patologia , Transativadores/genética
6.
J Neurochem ; 150(3): 312-329, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30734931

RESUMO

Loss of function mutations in the PTEN-induced putative kinase 1 (Pink1) gene have been linked with an autosomal recessive familial form of early onset Parkinson's disease (PD). However, the underlying mechanism(s) responsible for degeneration remains elusive. Presently, using co-immunoprecipitation in HEK (Human embryonic kidney) 293 cells, we show that Pink1 endogenously interacts with FK506-binding protein 51 (FKBP51 or FKBP5), FKBP5 and directly phosphorylates FKBP5 at Serine in an in vitro kinase assay. Both FKBP5 and Pink1 have been previously associated with protein kinase B (AKT) regulation. We provide evidence using primary cortical cultured neurons from Pink1-deficient mice that Pink1 increases AKT phosphorylation at Serine 473 (Ser473) challenged by 1-methyl-4-phenylpyridinium (MPP+ ) and that over-expression of FKBP5 using an adeno-associated virus delivery system negatively regulates AKT phosphorylation at Ser473 in murine-cultured cortical neurons. Interestingly, FKBP5 over-expression promotes death in response to MPP+ in the absence of Pink1. Conversely, shRNA-mediated knockdown of FKBP5 in cultured cortical neurons is protective and this effect is reversed with inhibition of AKT signaling. In addition, shRNA down-regulation of PH domain leucine-rich repeat protein phosphatase (PHLPP) in Pink1 WT neurons increases neuronal survival, while down-regulation of PHLPP in Pink1 KO rescues neuronal death in response to MPP+ . Finally, using co-immunoprecipitation, we show that FKBP5 interacts with the kinase AKT and phosphatase PHLPP. This interaction is increased in the absence of Pink1, both in Mouse Embryonic Fibroblasts (MEF) and in mouse brain tissue. Expression of kinase dead Pink1 (K219M) enhances FKBP5 interaction with both AKT and PHLPP. Overall, our results suggest a testable model by which Pink1 could regulate AKT through phosphorylation of FKBP5 and interaction of AKT with PHLPP. Our results suggest a potential mechanism by which PINK1-FKBP5 pathway contributes to neuronal death in PD. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.


Assuntos
Neurônios/metabolismo , Proteínas Quinases/metabolismo , Proteínas de Ligação a Tacrolimo/metabolismo , 1-Metil-4-fenilpiridínio/toxicidade , Animais , Morte Celular/efeitos dos fármacos , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Neurônios/efeitos dos fármacos , Neurotoxinas/farmacologia , Doença de Parkinson/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/fisiologia
7.
Aging Cell ; 18(3): e12924, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30793475

RESUMO

Mitochondrial dysfunction is implicated in most neurodegenerative diseases, including Alzheimer's disease (AD). We here combined experimental and computational approaches to investigate mitochondrial health and bioenergetic function in neurons from a double transgenic animal model of AD (PS2APP/B6.152H). Experiments in primary cortical neurons demonstrated that AD neurons had reduced mitochondrial respiratory capacity. Interestingly, the computational model predicted that this mitochondrial bioenergetic phenotype could not be explained by any defect in the mitochondrial respiratory chain (RC), but could be closely resembled by a simulated impairment in the mitochondrial NADH flux. Further computational analysis predicted that such an impairment would reduce levels of mitochondrial NADH, both in the resting state and following pharmacological manipulation of the RC. To validate these predictions, we utilized fluorescence lifetime imaging microscopy (FLIM) and autofluorescence imaging and confirmed that transgenic AD neurons had reduced mitochondrial NAD(P)H levels at rest, and impaired power of mitochondrial NAD(P)H production. Of note, FLIM measurements also highlighted reduced cytosolic NAD(P)H in these cells, and extracellular acidification experiments showed an impaired glycolytic flux. The impaired glycolytic flux was identified to be responsible for the observed mitochondrial hypometabolism, since bypassing glycolysis with pyruvate restored mitochondrial health. This study highlights the benefits of a systems biology approach when investigating complex, nonintuitive molecular processes such as mitochondrial bioenergetics, and indicates that primary cortical neurons from a transgenic AD model have reduced glycolytic flux, leading to reduced cytosolic and mitochondrial NAD(P)H and reduced mitochondrial respiratory capacity.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Glicólise , Mitocôndrias/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Biologia de Sistemas , Animais , Células Cultivadas , Feminino , Masculino , Camundongos , Microscopia de Fluorescência
8.
Cell Death Differ ; 25(3): 542-572, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29229998

RESUMO

Neurodegenerative diseases are a spectrum of chronic, debilitating disorders characterised by the progressive degeneration and death of neurons. Mitochondrial dysfunction has been implicated in most neurodegenerative diseases, but in many instances it is unclear whether such dysfunction is a cause or an effect of the underlying pathology, and whether it represents a viable therapeutic target. It is therefore imperative to utilise and optimise cellular models and experimental techniques appropriate to determine the contribution of mitochondrial dysfunction to neurodegenerative disease phenotypes. In this consensus article, we collate details on and discuss pitfalls of existing experimental approaches to assess mitochondrial function in in vitro cellular models of neurodegenerative diseases, including specific protocols for the measurement of oxygen consumption rate in primary neuron cultures, and single-neuron, time-lapse fluorescence imaging of the mitochondrial membrane potential and mitochondrial NAD(P)H. As part of the Cellular Bioenergetics of Neurodegenerative Diseases (CeBioND) consortium ( www.cebiond.org ), we are performing cross-disease analyses to identify common and distinct molecular mechanisms involved in mitochondrial bioenergetic dysfunction in cellular models of Alzheimer's, Parkinson's, and Huntington's diseases. Here we provide detailed guidelines and protocols as standardised across the five collaborating laboratories of the CeBioND consortium, with additional contributions from other experts in the field.


Assuntos
Mitocôndrias/metabolismo , Mitocôndrias/patologia , Modelos Biológicos , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Animais , Humanos
9.
J Biol Chem ; 290(51): 30441-52, 2015 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-26538564

RESUMO

Emerging evidence has demonstrated a growing genetic component in Parkinson disease (PD). For instance, loss-of-function mutations in PINK1 or PARKIN can cause autosomal recessive PD. Recently, PINK1 and PARKIN have been implicated in the same signaling pathway to regulate mitochondrial clearance through recruitment of PARKIN by stabilization of PINK1 on the outer membrane of depolarized mitochondria. The precise mechanisms that govern this process remain enigmatic. In this study, we identify Bcl2-associated athanogene 2 (BAG2) as a factor that promotes mitophagy. BAG2 inhibits PINK1 degradation by blocking the ubiquitination pathway. Stabilization of PINK1 by BAG2 triggers PARKIN-mediated mitophagy and protects neurons against 1-methyl-4-phenylpyridinium-induced oxidative stress in an in vitro cell model of PD. Collectively, our findings support the notion that BAG2 is an upstream regulator of the PINK1/PARKIN signaling pathway.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Mitocôndrias/metabolismo , Chaperonas Moleculares/metabolismo , Neurônios/metabolismo , Proteínas Quinases/metabolismo , Transdução de Sinais , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Sobrevivência Celular , Camundongos , Camundongos Mutantes , Mitocôndrias/genética , Membranas Mitocondriais/metabolismo , Mitofagia/genética , Chaperonas Moleculares/genética , Proteínas Quinases/genética , Estabilidade Proteica , Transporte Proteico , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
10.
Hum Mol Genet ; 21(22): 4888-903, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22872702

RESUMO

Mutations in several genes, including Parkin, PTEN-induced kinase 1 (Pink1) and DJ-1, are associated with rare inherited forms of Parkinson's disease (PD). Despite recent attention on the function of these genes, the interplay between DJ-1, Pink1 and Parkin in PD pathogenesis remains unclear. In particular, whether these genes regulate mitochondrial control pathways in neurons is highly controversial. Here we report that Pink1-dependent Parkin translocation does occur in mouse cortical neurons in response to a variety of mitochondrial damaging agents. This translocation only occurs in the absence of antioxidants in the neuronal culturing medium, implicating a key role of reactive oxygen species (ROS) in this response. Consistent with these observations, ROS blockers also prevent Parkin recruitment in mouse embryonic fibroblasts. Loss of DJ-1, a gene linked to ROS management, results in increased stress-induced Parkin recruitment and increased mitophagy. Expression of wild-type DJ-1, but not a cysteine-106 mutant associated with defective ROS response, rescues this accelerated Parkin recruitment. Interestingly, DJ-1 levels increase at mitochondria following oxidative damage in both fibroblasts and neurons, and this process also depends on Parkin and possibly Pink1. These results not only highlight the presence of a Parkin/Pink1-mediated pathway of mitochondrial quality control (MQC) in neurons, they also delineate a complex reciprocal relationship between DJ-1 and the Pink1/Parkin pathway of MQC.


Assuntos
Neurônios/metabolismo , Proteínas Oncogênicas/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Carbonil Cianeto m-Clorofenil Hidrazona/farmacologia , Linhagem Celular , Fibroblastos/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neurônios/efeitos dos fármacos , Peroxirredoxinas , Proteína Desglicase DJ-1 , Proteínas Quinases/deficiência , Proteínas Quinases/genética , Transporte Proteico , Rotenona/farmacologia , Transdução de Sinais
11.
Proc Natl Acad Sci U S A ; 107(7): 3186-91, 2010 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-20133695

RESUMO

Loss-of-function DJ-1 (PARK7) mutations have been linked with a familial form of early onset Parkinson disease. Numerous studies have supported the role of DJ-1 in neuronal survival and function. Our initial studies using DJ-1-deficient neurons indicated that DJ-1 specifically protects the neurons against the damage induced by oxidative injury in multiple neuronal types and degenerative experimental paradigms, both in vitro and in vivo. However, the manner by which oxidative stress-induced death is ameliorated by DJ-1 is not completely clear. We now present data that show the involvement of DJ-1 in modulation of AKT, a major neuronal prosurvival pathway induced upon oxidative stress. We provide evidence that DJ-1 promotes AKT phosphorylation in response to oxidative stress induced by H(2)O(2) in vitro and in vivo following 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment. Moreover, we show that DJ-1 is necessary for normal AKT-mediated protective effects, which can be bypassed by expression of a constitutively active form of AKT. Taken together, these data suggest that DJ-1 is crucial for full activation of AKT upon oxidative injury, which serves as one explanation for the protective effects of DJ-1.


Assuntos
1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/metabolismo , Neurotoxinas/metabolismo , Proteínas Oncogênicas/metabolismo , Estresse Oxidativo/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/fisiologia , Análise de Variância , Animais , Western Blotting , Fracionamento Celular , Células Cultivadas , Peróxido de Hidrogênio/metabolismo , Imuno-Histoquímica , Camundongos , Neurônios/metabolismo , Peroxirredoxinas , Fosforilação , Proteína Desglicase DJ-1
12.
Protein Cell ; 1(6): 552-62, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21204008

RESUMO

Progranulin (PGRN) has recently emerged as a key player in a subset of frontotemporal dementias (FTD). Numerous mutations in the progranulin gene have been identified in patients with familial or sporadic frontotemporal lobar degeneration (FTLD). In order to understand the molecular mechanisms by which PGRN deficiency leads to FTLD, we examined activity of PGRN in mouse cortical and hippocampal neurons and in human neuroblastoma SH-SY5Y cells. Treatment of mouse neurons with PGRN protein resulted in an increase in neurite outgrowth, supporting the role of PGRN as a neurotrophic factor. PGRN treatment stimulated phosphorylation of glycogen synthase kinase-3 beta (GSK-3ß) in cultured neurons. Knockdown of PGRN in SH-SY5Y cells impaired retinoic acid induced differentiation and reduced the level of phosphorylated GSK-3ß. PGRN knockdown cells were also more sensitized to staurosporine-induced apoptosis. These results reveal an important role of PGRN in neurite outgrowth and involvement of GSK-3ß in mediating PGRN activity. Identification of GSK-3ß activation as a downstream event for PGRN signaling provides a mechanistic explanation for PGRN activity in the nervous system. Our work also suggest that loss of axonal growth stimulation during neural injury repair or deficits in axonal repair may contribute to neuronal damage or axonal loss in FTLD associated with PGRN mutations. Finally, our study suggests that modulating GSK-3ß or similar signaling events may provide therapeutic benefits for FTLD cases associated with PGRN mutations.


Assuntos
Quinase 3 da Glicogênio Sintase/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Neuritos/fisiologia , Neurônios/fisiologia , Animais , Apoptose , Técnicas de Cultura de Células , Diferenciação Celular , Linhagem Celular , Embrião de Mamíferos , Feminino , Técnicas de Silenciamento de Genes , Quinase 3 da Glicogênio Sintase/genética , Glicogênio Sintase Quinase 3 beta , Granulinas , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Camundongos , Neurônios/citologia , Fosforilação , Gravidez , Progranulinas , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA
13.
J Biol Chem ; 281(18): 12475-84, 2006 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-16537548

RESUMO

Chromatin condensation and oligonucleosomal DNA fragmentation are the nuclear hallmarks of apoptosis. A proteolytic fragment of the apoptotic chromatin condensation inducer in the nucleus (Acinus), which is generated by caspase cleavage, has been implicated in mediating apoptotic chromatin condensation prior to DNA fragmentation. Acinus is also involved in mRNA splicing and a component of the apoptosis and splicing-associated protein (ASAP) complex. To study the role of Acinus for apoptotic nuclear alterations, we generated stable cell lines in which Acinus isoforms were knocked down by inducible and reversible RNA interference. We show that Acinus is not required for nuclear localization and interaction of the other ASAP subunits SAP18 and RNPS1; however, knockdown of Acinus leads to a reduction in cell growth. Most strikingly, down-regulation of Acinus did not inhibit apoptotic chromatin condensation either in intact cells or in a cell-free system. In contrast, although apoptosis proceeds rapidly, analysis of nuclear DNA from apoptotic Acinus knockdown cells shows inhibition of oligonucleosomal DNA fragmentation. Our results therefore suggest that Acinus is not involved in DNA condensation but rather point to a contribution of Acinus in internucleosomal DNA cleavage during programmed cell death.


Assuntos
Apoptose , Cromatina/química , Fragmentação do DNA , Proteínas Nucleares/fisiologia , Nucleossomos/química , Caspases/metabolismo , Núcleo Celular/metabolismo , Sistema Livre de Células , Cromatina/metabolismo , DNA/metabolismo , Regulação para Baixo , Células HeLa , Humanos , Proteínas Nucleares/metabolismo , Plasmídeos/metabolismo , Interferência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...